Shortcuts & Tips. Click here👆to get an answer to your question ️ In a Δ ABC, cos A = 3/5 and cos B = 5/13. The value of cos C can be.
If \[\sin A = \frac{4}{5}\] and \[\cos B = \frac{5}{13}\], where 0 < A, \[B < \frac{\pi}{2}\], find the value of the following sin A + B Given \[ \sin A = \frac{4}{5}\text{ and }\cos B = \frac{5}{13}\]We know that\[ \cos A = \sqrt{1 - \sin^2 A}\text{ and }\sin B = \sqrt{1 - \cos^2 B} ,\text{ where }0 < A , B < \frac{\pi}{2}\]\[ \Rightarrow \cos A = \sqrt{1 - \left \frac{4}{5} \right^2} \text{ and }\sin B = \sqrt{1 - \left \frac{5}{13} \right^2}\]\[ \Rightarrow \cos A = \sqrt{1 - \frac{16}{25}}\text{ and }\sin B = \sqrt{1 - \frac{25}{169}}\]\[ \Rightarrow \cos A = \sqrt{\frac{9}{25}}\text{ and }\sin B = \sqrt{\frac{144}{169}}\]\[ \Rightarrow \cos A = \frac{3}{5}\text{ and }\sin B = \frac{12}{13}\]Now,\[ \sin\left A + B \right = \sin A \cos B + \cos A \sin B\]\[ = \frac{4}{5} \times \frac{5}{13} + \frac{3}{5} \times \frac{12}{13}\]\[ = \frac{20}{65} + \frac{36}{65}\]\[ = \frac{56}{65}\]
2sin a c α= a c= ⋅ = °⋅ =sin sin32 12 6,36α cos b c α= b c= ⋅ = °⋅ =cos cos32 12 10,18α Odv ěsny trojúhelníka ABC mají velikosti a =6,36 a b =10,18 , jeho vnit řní úhly pak β= °58 a γ= °90 . Př. 2: V pravoúhlém trojúhelníku s přeponou a =3 platí b =2 . Ur či zbývající stranu a vnit řní úhly trojúhelníka. a je p řepona, jde o nestandardní situaci rad
Here, colorgreenI^st Quadrant=> 0 all+ve sina=5/13=>cosa=sqrt1-sin^2a=sqrt1-25/169=12/13 cosb=4/5=>sinb=sqrt1-cos^2b=sqrt1-16/25=3/5 colorredisina+b=sinacosb+cosasinb colorwhiteisina+b=5/13xx4/5+12/13xx3/5=20/65+36/65=56/65 colorblueiicosa-b=cosacosb+sinasinb colorwhiteiicosa-b=12/13xx4/5+5/13xx3/5=48/65+15/65=63/65 colorvioletiiicosb/2=sqrt1+cosb/2=sqrt1+4/5/2=sqrt9/10=3/sqrt10 colororangeivsin2a=2sinacosa=2xx5/13xx12/13=120/169
IfSin a = 3 5 , Cos B = − 12 13 , Where a and B Both Lie in Second Quadrant, Find the Value of Sin (A + B). CBSE CBSE (Science) Class 11. Textbook Solutions 14856. Important Solutions 9. Question Bank Solutions 13906. Concept Notes & Videos 879 Syllabus. Advertisement Remove Open in Appwe have the value of and but we don't have the value of and so, first we find the value of and let side opposite to angle hypotenuse where is any positive integer So, by Pythagoras theorem we can find the third side of a triangle taking positive square root as side cannot be negative So, Base we know that side adjacent to angle hypotenuse so, now we have to find the we know that let side adjacent to angle hypotenuse where is any positive integer so, by Pythagoras theorem, we can find the third side of a triangle taking positive square root since, side cannot be negative so, perpendicular we know that Now putting the values, we get Was this answer helpful? 00 Diatassudah diperoleh kalau nilai dari sin x = ³/₅, jadi.. sin (180 - x) = sin x sin (180 - x) = ³/₅ Sudut tumpul adalah sudut yang berada di kuadran kedua, nilai dari sinus pada kuadran kedua adalah positif dan negatif untuk cosinus-nya. Diatas diperoleh perhitungan jika sin (180 - x) = ³/₅, yang tandanya positif. Jadi sudah sesuai.. The correct option is B5633Explanation for the correct optionStep 1. Find the value of tan2αGiven, cosα+β=45⇒ sinα+β=35 sinα-β=513⇒ cosα-β=1213Now, we can write2α=α+β+α–βStep 2. Take "tan" on both sides, we gettan2α=tanα+β+α–βtan2α=[tanα+β+tanα–β][1–tanα+βtanα–β] …1 ∵tanθ+Ï•=tanθ+tanÏ•1-tanθtanÏ•Also,tanα+β=sinα+βcosα+β=3/54/5=34tanα–β=sinα–βcosα–β=5/1312/13=512Step 3. Put these values in equation 1, we get∴tan2α=3/4+5/121–3/45/12=9+5/1248–15/48=5633Hence, Option ‘B’ is Correct. Find step-by-step solutions and answers to Exercise 39b from Calculus: Early Transcendentals - 9781118883761, as well as thousands of textbooks so you can move forward with confidence. given, cosA+B=4/5, thus tanA+B=3/4 from triangle sinA-B=5/13,thus tanA-B=5/12. then tan2A=tanA+B+A-B =tanA+B+tanA-B/1-tanA+BtanA-B =3/4+5/12/1-3/45/12 = 56/33.

14 A and B are acute angles with sin A = 5 4 and cos B = 13 5 . Find the following as exact values. a sin (A + B) b cos (A − B) 15 D and E are acute angles with sin D = 25 7 and sin E = 5 3 . Find the following as exact values. a sin (D − E) b cos (D + E)

Byju's AnswerStandard XIIMathematicsComposition of Trigonometric Functions and Inverse Trigonometric FunctionsIf cos a+b=4 ...QuestionOpen in AppSolutiongiven, cosA+B = 4/5, thus tanA+B=3/4. sinA-B=5/13,thus tanA-B=5/12. then tan2A=tanA+B+A-B =tanA+B+tanA-B/1-tanA+BtanA-B =3/4+5/12/1-3/45/12 =56/ Corrections20Similar questionsQ. If sinA=45 and cosB=513, where 0
3 Find the exact value of cos 75. 4. If sin A = and A is in quadrant II and cos B = and B is in quadrant I, find cos (A - B). 5. If x and y are acute angles, sin x = and sin y = , then what does sin (x + y) equal in simplest radical form? 6. Find the exact value of
szI6R8.
  • 67fyty3ggo.pages.dev/178
  • 67fyty3ggo.pages.dev/75
  • 67fyty3ggo.pages.dev/283
  • 67fyty3ggo.pages.dev/163
  • 67fyty3ggo.pages.dev/386
  • 67fyty3ggo.pages.dev/348
  • 67fyty3ggo.pages.dev/300
  • 67fyty3ggo.pages.dev/206
  • 67fyty3ggo.pages.dev/239
  • sin a 4 5 cos b 5 13